
Querier:
simple relational database access

Michal Balda

What is Querier?

 A library for querying relational databases.

 Focused on simplicity.

 Heavily inspired by NotORM
(http://www.notorm.com/).

Why?

Accessing a relational database in Pharo:

Why?

Accessing a relational database in Pharo:

1) Write SQL by hand.

Why?

Accessing a relational database in Pharo:

1) Write SQL by hand.

2) Use an object-relational mapper (GLORP).

Why?

Accessing a relational database in Pharo:

1) Write SQL by hand.

1.5) Use Querier.

2) Use an object-relational mapper (GLORP).

Database structure

Primary Key Column id

Foreign Key Column {table}_id

Table Name {table}

Setup

| driver structure db |

driver := "…".
structure := QRRConventionalStructure new.
db := Querier withDriver: driver structure: structure

Accessing a table

db table: #song
"or use a shortcut:"
db song

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

Accessing a table

db table: #song
"or use a shortcut:"
db song

SELECT *
FROM song

Accessing a table

db song do: [:row |
Transcript show: row title; cr]

Two principles

1) A table is a collection of rows.

2) A row is a dictionary of values.

WHERE

db song select: [:row |
(row length >= 180)
& (row length <= 300)]

SELECT *
FROM song
WHERE length >= 180
AND length <= 300

WHERE

db song select: [:row |
(row length >= 180)
& (row length <= 300)]

Udo Schneider: Block Translators - parsing magic
http://readthesourceluke.blogspot.com/2014/09/

block-translators-parsing-magic.html

ORDER BY

db song sorted: [:a :b |
a length < b length]

SELECT *
FROM song
ORDER BY length ASC

LIMIT and OFFSET

(db song sorted: [:a :b |
a length < b length])

first: 10

SELECT *
FROM song
ORDER BY length ASC
LIMIT 10

LIMIT and OFFSET

(db song sorted: [:a :b |
a length < b length])

allButFirst: 10

SELECT *
FROM song
ORDER BY length ASC
OFFSET 10

Selecting a single row

row := db song detect: [:each |
each id = 123]

SELECT *
FROM song
WHERE id = 123
LIMIT 1

Selecting by primary key

row := db song at: 123

SELECT *
FROM song
WHERE id = 123
LIMIT 1

Selecting by primary key

row := db song at: 123

SELECT *
FROM song
WHERE id = 123
LIMIT 1

Aggregations

db song average: [:row |
row length]

db song average: #length

SELECT AVG(length)
FROM song

Enumerating the result

db song collect: [:row |
row title]

db song do: [:row |
Transcript show: row title; cr]

db song size

Accessing related tables

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar

Accessing related tables

db song select: [:row |
row album name = 'Unknown Album']

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar

Accessing related tables

db song select: [:row |
row album name = 'Unknown Album']

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
WHERE album.name = 'Unknown Album'

Accessing related tables

db song select: [:row |
row album name = 'Unknown Album']

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
WHERE album.name = 'Unknown Album'

Accessing related tables

db song select: [:row |
row album artist name = 'Unknown Artist']

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
LEFT JOIN artist

ON album.artist_id = artist.id
WHERE artist.name = 'Unknown Artist'

Accessing related tables

db song do: [:row |
Transcript show: row album name]

Accessing related tables

db song do: [:row |
Transcript show: row album name]

1) SELECT *
FROM song

Accessing related tables

db song do: [:row |
Transcript show: row album name]

1) SELECT *
FROM song

Accessing related tables

db song do: [:row |
Transcript show: row album name]

1) SELECT *
FROM song

2) SELECT *
FROM album
WHERE id IN (1, 2, 3, …)

Accessing related tables

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar

The opposite direction

db album do: [:row |
row songCollection do: [:song |

Transcript show: song name; cr]]

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar

The opposite direction

db album do: [:row |
row songCollection do: [:song |

Transcript show: song name; cr]]

1) SELECT *
FROM album

The opposite direction

db album do: [:row |
row songCollection do: [:song |

Transcript show: song name; cr]]

1) SELECT *
FROM album

2) SELECT *
FROM song
WHERE album_id IN (1, 2, 3, …)

UPDATE

db song do: [:row |
row length: row length + 10.
row save]

1) SELECT * FROM song
2) UPDATE song SET length = 325

WHERE id = 1
3) UPDATE song SET length = 648

WHERE id = 2
4) … and many more

Better UPDATE

db song update: [:row |
row length: row length + 10]

UPDATE song
SET length = length + 10

Better UPDATE

(db song select: [:row |
row length < 180])

 update: [:row |
row length: row length + 10]

UPDATE song
SET length = length + 10
WHERE length < 180

DELETE

(db song select: [:row |
row length < 180])

 removeAll

db song delete: [:row |
row length < 180]

DELETE FROM song
WHERE length < 180

INSERT

| row |
row := db song new.
row title: 'New Song'.
row length: 316.
row album: (db album detect: [:album |

album name = 'Unknown Album']).
row save.

Transcript show: row id

Current Status

 A proof-of-concept for Pharo + Postgres.

 Working on polishing all features + querying
other RDBMS through Garage
(https://guillep.github.io/DBXTalk/garage/).

Future work

 Add ORM-like features (instantiate your
entity classes instead of dictionaries).

 Add at least partial support for non-relational
databases (like MongoDB).

Questions?

http://querier.xmb.cz/

Thank you for your attention!

http://querier.xmb.cz/

	Slide 1
	What is Querier?
	Why?
	Why?
	Why?
	Why?
	Database structure
	Setup
	Accessing a table
	Accessing a table
	Accessing a table
	Two principles
	WHERE
	WHERE
	ORDER BY
	LIMIT and OFFSET
	LIMIT and OFFSET
	Selecting a single row
	Selecting by primary key
	Selecting by primary key
	Aggregations
	Enumerating the result
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	Accessing related tables
	The opposite direction
	The opposite direction
	The opposite direction
	UPDATE
	Better UPDATE
	Better UPDATE
	DELETE
	INSERT
	Current Status
	Future work
	Slide 43
	Slide 44

