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What is Querier?

 A library for querying relational databases.

 Focused on simplicity.

 Heavily inspired by NotORM 
(http://www.notorm.com/).
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Why?

Accessing a relational database in Pharo:

1)     Write SQL by hand.

1.5)   Use Querier.

2)     Use an object-relational mapper (GLORP).



Database structure

Primary Key Column id

Foreign Key Column {table}_id

Table Name {table}



Setup

| driver structure db |

driver := "…".
structure := QRRConventionalStructure new.
db := Querier withDriver: driver structure: structure



Accessing a table

db table: #song
"or use a shortcut:"
db song

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key



Accessing a table

db table: #song
"or use a shortcut:"
db song

SELECT *
FROM song



Accessing a table

db song do: [ :row |
Transcript show: row title; cr ]



Two principles

1) A table is a collection of rows.

2) A row is a dictionary of values.



WHERE

db song select: [ :row |
(row length >= 180)
& (row length <= 300) ]

SELECT *
FROM song
WHERE length >= 180
AND length <= 300



WHERE

db song select: [ :row |
(row length >= 180)
& (row length <= 300) ]

Udo Schneider: Block Translators - parsing magic
http://readthesourceluke.blogspot.com/2014/09/

block-translators-parsing-magic.html



ORDER BY

db song sorted: [ :a :b |
a length < b length ]

SELECT *
FROM song
ORDER BY length ASC



LIMIT and OFFSET

(db song sorted: [ :a :b |
a length < b length ])

first: 10

SELECT *
FROM song
ORDER BY length ASC
LIMIT 10



LIMIT and OFFSET

(db song sorted: [ :a :b |
a length < b length ])

allButFirst: 10

SELECT *
FROM song
ORDER BY length ASC
OFFSET 10



Selecting a single row

row := db song detect: [ :each |
each id = 123 ]

SELECT *
FROM song
WHERE id = 123
LIMIT 1



Selecting by primary key

row := db song at: 123

SELECT *
FROM song
WHERE id = 123
LIMIT 1



Selecting by primary key

row := db song at: 123

SELECT *
FROM song
WHERE id = 123
LIMIT 1



Aggregations

db song average: [ :row |
row length ]

db song average: #length

SELECT AVG(length)
FROM song



Enumerating the result

db song collect: [ :row |
row title ]

db song do: [ :row |
Transcript show: row title; cr ]

db song size



Accessing related tables

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar



Accessing related tables

db song select: [ :row |
row album name = 'Unknown Album' ]

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar



Accessing related tables

db song select: [ :row |
row album name = 'Unknown Album' ]

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
WHERE album.name = 'Unknown Album'
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db song select: [ :row |
row album name = 'Unknown Album' ]

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
WHERE album.name = 'Unknown Album'



Accessing related tables

db song select: [ :row |
row album artist name = 'Unknown Artist' ]

SELECT *
FROM song
LEFT JOIN album

ON song.album_id = album.id
LEFT JOIN artist

ON album.artist_id = artist.id
WHERE artist.name = 'Unknown Artist'



Accessing related tables

db song do: [ :row |
Transcript show: row album name ]
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db song do: [ :row |
Transcript show: row album name ]

1) SELECT *
FROM song



Accessing related tables

db song do: [ :row |
Transcript show: row album name ]

1) SELECT *
FROM song

2) SELECT *
FROM album
WHERE id IN (1, 2, 3, …)



Accessing related tables

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar



The opposite direction

db album do: [ :row |
row songCollection do: [ :song |

Transcript show: song name; cr ] ]

song
id Integer, Primary Key
title Varchar
length Integer
album_id Integer, Foreign Key

album

id Integer, Primary Key
name Varchar



The opposite direction
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row songCollection do: [ :song |
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The opposite direction

db album do: [ :row |
row songCollection do: [ :song |

Transcript show: song name; cr ] ]

1) SELECT *
FROM album

2) SELECT *
FROM song
WHERE album_id IN (1, 2, 3, …)



UPDATE

db song do: [ :row |
row length: row length + 10.
row save ]

1) SELECT * FROM song
2) UPDATE song SET length = 325

WHERE id = 1
3) UPDATE song SET length = 648

WHERE id = 2
4) … and many more



Better UPDATE

db song update: [ :row |
row length: row length + 10 ]

UPDATE song
SET length = length + 10



Better UPDATE

(db song select: [ :row |
row length < 180 ])

 update: [ :row |
row length: row length + 10 ]

UPDATE song
SET length = length + 10
WHERE length < 180



DELETE

(db song select: [ :row |
row length < 180 ])

 removeAll

db song delete: [ :row |
row length < 180 ]

DELETE FROM song
WHERE length < 180



INSERT

| row |
row := db song new.
row title: 'New Song'.
row length: 316.
row album: (db album detect: [ :album |

album name = 'Unknown Album' ]).
row save.

Transcript show: row id



Current Status

 A proof-of-concept for Pharo + Postgres.

 Working on polishing all features + querying 
other RDBMS through Garage 
(https://guillep.github.io/DBXTalk/garage/).



Future work

 Add ORM-like features (instantiate your 
entity classes instead of dictionaries).

 Add at least partial support for non-relational 
databases (like MongoDB).



Questions?

http://querier.xmb.cz/



Thank you for your attention!

http://querier.xmb.cz/
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